Metabolic engineering of Saccharomyces cerevisiae for production of very long chain fatty acid-derived chemicals

نویسندگان

  • Tao Yu
  • Yongjin J Zhou
  • Leonie Wenning
  • Quanli Liu
  • Anastasia Krivoruchko
  • Verena Siewers
  • Jens Nielsen
  • Florian David
چکیده

Production of chemicals and biofuels through microbial fermentation is an economical and sustainable alternative for traditional chemical synthesis. Here we present the construction of a Saccharomyces cerevisiae platform strain for high-level production of very-long-chain fatty acid (VLCFA)-derived chemicals. Through rewiring the native fatty acid elongation system and implementing a heterologous Mycobacteria FAS I system, we establish an increased biosynthesis of VLCFAs in S. cerevisiae. VLCFAs can be selectively modified towards the fatty alcohol docosanol (C22H46O) by expressing a specific fatty acid reductase. Expression of this enzyme is shown to impair cell growth due to consumption of VLCFA-CoAs. We therefore implement a dynamic control strategy for separating cell growth from docosanol production. We successfully establish high-level and selective docosanol production of 83.5 mg l-1 in yeast. This approach will provide a universal strategy towards the production of similar high value chemicals in a more scalable, stable and sustainable manner.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The use of metabolic engineering to produce fatty acid-derived biofuel and chemicals in Saccharomyces cerevisiae: a review

Production of fatty acid-derived biofuels and chemicals have garnered attention in recent years owing to their potential to replace petroleum and plant oil-derived products. Through the metabolic engineering of the fatty acid metabolism pathway, advanced fuels and chemicals such as free fatty acid, triacylglycerol, biodiesel, fatty alcohols, alkanes/alkene, R-3-hydroxybutyric acid, polyhydroxya...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for production of fatty acid-derived biofuels and chemicals.

As the serious effects of global climate change become apparent and access to fossil fuels becomes more limited, metabolic engineers and synthetic biologists are looking towards greener sources for transportation fuels. In recent years, microbial production of high-energy fuels by economically efficient bioprocesses has emerged as an attractive alternative to the traditional production of trans...

متن کامل

Fatty Acid-Derived Biofuels and Chemicals Production in Saccharomyces cerevisiae

Volatile energy costs and environmental concerns have spurred interest in the development of alternative, renewable, sustainable, and cost-effective energy resources. Environment-friendly processes involving microbes can be used to synthesize advanced biofuels. These fuels have the potential to replace fossil fuels in supporting high-power demanding machinery such as aircrafts and trucks. From ...

متن کامل

Metabolic engineering of Saccharomyces cerevisiae for the overproduction of short branched-chain fatty acids.

Short branched-chain fatty acids (SBCFAs, C4-6) are versatile platform intermediates for the production of value-added products in the chemical industry. Currently, SBCFAs are mainly synthesized chemically, which can be costly and may cause environmental pollution. In order to develop an economical and environmentally friendly route for SBCFA production, we engineered Saccharomyces cerevisiae, ...

متن کامل

Combinatorial metabolic engineering of Saccharomyces cerevisiae for terminal alkene production.

Biological production of terminal alkenes has garnered a significant interest due to their industrial applications such as lubricants, detergents and fuels. Here, we engineered the yeast Saccharomyces cerevisiae to produce terminal alkenes via a one-step fatty acid decarboxylation pathway and improved the alkene production using combinatorial engineering strategies. In brief, we first character...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017